測量誤差の処理法

目 次

第1章	観測の	の誤差	7
1 · 1	観測	の種類 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	1.	独立観測 · · · · · · · · · · · · · · · · · · ·	7
	2.	条件つき観測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	3.	直接観測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	4.	間接観測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
1 · 2	誤差	:の種類	9
	1.	定 誤 差	
	2.	不定誤差 · · · · · · · · · · · · · · · · · · ·	2
1 · 3	定誤	差を取り除く方法・・・・・・・・・・・・・・・・・・・・・・・・・ 1	2
	1.	個人的定誤差を取り除く方法・・・・・・・・・・・・・・・・・1	2
	2.	器械的定誤差を取り除く方法・・・・・・・・・・・・・・・・・1	3
	3.	物理的定誤差を取り除く方法・・・・・・・・・・・・・・・・・1	
1 · 4	過失	:とその防止注意 · · · · · · · · · · · · · · · · · · ·	7
	1.	過失の起りやすい例・・・・・・・・・・・・・・・・・・・・・・・・1	7
	2.	過失を防ぐ注意・・・・・・・・・・・・・・・・・・・・・・・1	7
	例	題 ····································	8
	第1	章の問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
第2章	誤差(ፓ確率·····	9
2 · 1	誤差	:の現われかた · · · · · · · · · · · · · · · · · · ·	9
	1.	アメリカ兵器局の実験例・・・・・・・・・・・・・・・・・・・・・・・・2	9
	2.	日本の三角測量に現われた誤差・・・・・・・・・・・・・・・・・・・・・・・3	1
	3.	数学的に現われる誤差の分布状態 3	5
2 · 2	確率	:曲線(誤差曲線)の外観・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.	精度と誤差で表わす確率式・・・・・・・・・・・・・・・・・3	8
	2.	2つの確率式の精度の比較・・・・・・・・・・・・・・・・・・・・・・・3	8
	3.	最小二乗法の原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0

第3	3 草	独	は立観測の最確値とその精度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	3.	1 ;	真値と最確値はどう違うか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
			1. 真値の意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
		:	2. 最確値の意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
		;	3. 真誤差,残差および補正値の意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	3 · :	2 1	観測値の重量(重み・軽重)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	3 · :	3 ;	最確値の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
			1. 算術平均値の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
		:	2. 重量平均値の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	3 ·	4 }	独立観測値の精度の表わしかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
			1. 真誤差で表わす3種の誤差・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
		:	2. 残差で表わす1観測値の誤差・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
		;	3. 残差で表わす最確値の誤差・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
		ĺ	例 題	61
		Š	第3章の問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
第4	章		≹差および重量の拡張 · · · · · · · · · · · · · · · · · · ·	
	4 ·	1	誤差拡張に必要な予備知識・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
			1. 三角関数の定め・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		:	2. 微分法とその予備知識	
			3. 本書に用いる主な数学公式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4 · :	2	誤差の拡張・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
			1. 誤差の拡張の意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		:	2. 四則算の基本式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		;	3. 誤差拡張の一般式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
	4 • :	3]	重量の拡張	
		-	例 題 1	
		Ě	第4章の問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
第5	· 音	豣	は立間接観測の処理法 ····································	25
<i>≯</i> 77 \	•		1つの未知量の求めかた・・・・・・・・・・・・・・・・・・・・・・・・ 1	
			2つの未知量の求めかた	
	J - 1		2. 一般形式による解法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
			1.	
			2. 標準方住式の解されたこその点懐・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

	5 · 3	3 最確値 <i>x</i> , y の精度の求めかた · · · · · · · · · · · · · · · · · · ·	
		 最確値x,yの重量の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		2. 1 観測の平均二乗誤差(標準誤差)の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	142
	5 · 4	$f 1$ 未知量 $f X$, $f Y$ が特別な形の場合の処理法 $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	145
		1. 未知量の数値が大きな場合・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	145
		2. 未知量X, Yの形が1次形でない場合・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146
		例 題	149
		第5章の問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第6	6章:	条件つき観測の処理法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
	6 · 1	Ⅰ 条件方程式の作りかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
		1. 直接観測による場合の例	158
		2. 間接観測による場合の例	
	6 · 2	2 1 つの条件方程式の解きかた⋯⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	175
		1. 直接観測による場合の例	175
		2. 間接観測による場合の例	
	6 · 3	3 2つ以上の条件方程式の解きかた ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		1. 3つの条件方程式の一般解法	
		2. 補正された最確値の精度の求めかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	6 · 4	1 条件式の個数の決めかた····································	
		1. 三角網(鎖)の整正に必要な条件式の個数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	191
		2. 多角網の整正に必要な条件式の個数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		3. 水準網の整正に必要な条件式の個数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		例 題	
		第6章の問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	214
付	録	{	217
		第1章の問題のヒント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	217
		第3章の問題のヒント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
		第4章の問題のヒント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	218
		第5章の問題のヒント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	219
		第6章の問題のヒント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	219
		ギリシヤ文字の読みかた・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	220